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Haar Wavelet Method for Constrained Nonlinear Optimal Control Problems with 
Application to Production Inventory Model

(Kaedah Gelombang Kecil Haar untuk Masalah Kawalan Optimum Kekangan tak Linear 
dengan Model Aplikasi untuk Inventori Pengeluaran)

WALEEDA SWAIDAN* & AMRAN HUSSIN

ABSTRACT

A new numerical method was proposed in this paper to address the nonlinear quadratic optimal control problems, with 
state and control inequality constraints. This method used the quasilinearization technique and Haar wavelet operational 
matrix to convert the nonlinear optimal control problem into a sequence of quadratic programming problems. The 
inequality constraints for trajectory variables were transformed into quadratic programming constraints using the Haar 
wavelet collocation method. The proposed method was applied to optimize the control of the multi-item inventory model 
with linear demand rates. By enhancing the resolution of the Haar wavelet, we can improve the accuracy of the states, 
controls and cost. Simulation results were also compared with other researchers’ work. 
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ABSTRAK

Kaedah berangka baru telah dicadangkan dalam kertas ini untuk menangani masalah kawalan optimum quadratik 
tak linear dengan kekangan keadaan serta kawalan ketidaksamaan. Kaedah ini menggunakan teknik quasipelinearan 
dan matriks operasi gelombang kecil Haar untuk menukar masalah kawalan optimum tak linear kepada suatu turutan 
masalah pengaturcaraan quadratik. Kekangan ketidaksamaan bagi pemboleh ubah trajektori diubah menjadi kekangan 
pengaturcaraan quadratik menggunakan kaedah kolokasi gelombang kecil Haar. Kaedah cadangan telah digunakan untuk 
mengoptimumkan kawalan model inventori item berbilang dengan kadar permintaan linear. Dengan mempertingkatkan 
resolusi gelombang kecil Haar, ketepatan keadaan, kawalan serta kos boleh ditambah baik. Keputusan simulasi juga 
dibandingkan dengan hasil penyelidikan lain.
 
Kata kunci: Kawalan optimum; kaedah langsung; masalah pengaturcaraan quadratik; matriks operasi gelombang 
kecil Haar

INTRODUCTION

Optimal control problems without constraints can be 
solved successfully using most of the direct and indirect 
techniques. However, inequality constraints often generate 
both analytical and computational difficulties. Thus, 
researchers aim to solve constrained optimal control 
problems with numerical methods. The direct method is 
widely used to solve nonlinear optimal control problems. 
It obtains an optimal solution by directly minimizing the 
constrained performance index. Furthermore, this method 
converts the optimal control problem into a mathematical 
programming problem using either the discretization or the 
parameterization technique. Parameterization methods are 
classified into three types: state, control, and state control.
 Many researchers have studied the theoretical aspects 
of the inequality constraints of trajectory. Mehra and Davis 
(1972) noted that the complications in handling trajectory 
inequality constraints in gradient or conjugate gradient 
methods were caused by the exclusive use of control 
variables as independent variables in the search procedure. 
In response, they presented the so-called generalized 

gradient technique. Jaddu (1998) established some 
numerical methods based on a parameterization technique 
with Chebyshev polynomials to solve unconstrained 
and constrained optimal control problems using the 
quasilinearization method. Jaddu (2002) later extended 
this concept to nonlinear optimal control problems with 
terminal state and control inequality constraints, as well 
as to simple bounds on state variables.
 Historically, orthogonal functions have been used 
to solve various problems of dynamic systems. These 
functions mainly convert underlying differential equations 
into integral equations through integration, approximate 
the various functions in the equation by truncating the 
orthogonal series and eliminate integral operations through 
the operational matrix of integration. Thus, they reduce 
the original problems to those of solving a system of 
linear algebraic equations. A typical example is the Haar 
wavelet function, which possesses useful properties such 
as orthogonality, compact support and the capability to 
represent functions at different levels of resolution. It 
has been applied to a wide range of application such as 
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in system analysis (Chen & Hsiao 1999) and numerical 
solutions of nonlinear integral equations (Aziz & Siraj 
2013), boundary-value problems (Siraj et al. 2011, 2010) 
and optimal control problems (Swaidan & Hussin 2013).
Solving optimal control problem through orthogonal 
functions, especially Haar wavelets, is an active research 
area. In fact, Dai and Cochran (2009) converted optimal 
control problems into nonlinear programming (NLP) 
parameters at the collocation points using a Haar 
wavelet technique. NLP problems can be solved using 
NLP solvers such as the SNOPT. Han and Li (2011) 
also presented a numerical method to solve nonlinear 
optimal control problems with terminal state and state 
and control inequality constraints. This method is based 
on quasilinearization and Haar functions. Moreover, the 
researchers parameterized only the state variables and 
added artificial controls to equalize the number of state and 
control. In the present study, we do not incorporate artificial 
variables, but we parameterize both states and control 
variables. In addition, Marzban and Razzaghi (2010) 
presented a numerical method to address constrained 
and nonlinear optimal control problems. Although their 
method is also based on Haar wavelets but it required a 
set of necessary conditions. Our method is much easier to 
implement than that of Dai and Cochran (2009) and Han 
and Li (2011) because our method does not require time 
transformation to the domain [0,1].
 We derived a novel method to solve nonlinear 
unconstrained optimal control problems using indirect 
method from a recent study (Swaidan & Hussin 2013) and 
our present study aims to effectively compute for optimal 
control using direct method. We introduced a numerical 
method to solve nonlinear optimal control problems 
under inequality constraints. We parameterize both the 
states and the controls using Haar wavelet functions. 
The nonlinear optimal control problem is converted into 
a sequence quadratic programming problems through 
the quasilinearization iterative technique. Moreover, 
the inequality constraints for trajectory variables are 
transformed into quadratic programming constraints using 
the Haar wavelet collocation method.
 The paper is organized as follows: The second 
section describes the problem statement, which involves 
constrained nonlinear optimal control problems. The 
next section formulates the Haar wavelet system and the 
Haar wavelet operational matrices required in subsequent 
development. The section that follows presents the 
proposed method to approximate the solution to the 
constrained nonlinear optimal control problem using Haar 
wavelet collocation and quasilinearization methods. In the 
final section, the proposed method is applied to solve the 
optimal control of a two-item inventory model with stock-
dependent deterioration and linear demand rates. 

PROBLEM STATEMENT

The control system is given by differential equation in 
the form 

 (t) = f(x(t), u(t), t),   x(0) = x0,  0 ≤ t ≤ tf, (1)

where, x(t) ∈ Rn1  is the state vector; u(t) ∈ Rn2  is the control 
vector; f is continuously differentiable with respect to all 
its arguments; x0 is the initial condition vector and tf is a 
known finite time and they are subjected to the following 
constraints:

 x(t) ≤ xmax,  x(t) ≥ xmin, (2)

   (3)

 The vector inequalities such as x(t) ≤ xmax means xi(t) 
≤ xmax,i for all i = 1,2,…,n1.
 We aim to determine the optimal control u*(t) and 
the corresponding state vector x(t) that minimizes the 
following performance index: 

  (4)

where, Q ∈ Rn1×n1 is a positive semi definite matrix and 
R ∈ Rn2×n2  is a positive definite matrix. It is assumed that 
the problem in (1)-(4) has a unique solution. 

HAAR WAVELETS

The orthogonal set of the Haar wavelets hi(x) is a group of 
square waves over the interval [τ1, τ2),  which is defined 
as follows:

  (5)

 Other wavelets can be obtained by dilating and 
translating the mother wavelet h1(x). In general, hi(x) = 
h1(2

jx – k), where i = 2j + k, i, j ∈ N ∪ {0},  and  0 ≤ k < 2j 
and satisfies
 
  (6)

 Any  f(x) ∈ L2([τ1, τ2])can be expanded into a Haar 
series of infinite terms: 

  (7)

where h0 is the characteristic function χ[τ1,τ2). If f(x)  
is approximated as a piecewise constants, then the 
decomposition can be terminated as follows:
 
  (8)

where i = 2j + k, j = 0,1,2,… log2 m – 1 and  k = 0,1,2,…, 
2j – 1 and m is the dyadic resolution. The Haar coefficients 
that are 
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  (9)

can be obtained by minimizing the integral square error 

  The sum in (8) can be compacted 

into the form:

 f (x) =  hm(x), (10)

where, cm = [c0 c1 … cm –1]
T is the coefficient vector and 

, is the Haar function vector. 

From (6) we obtain

   (11)

where   for 

 At collocation points ,  r = 1, 2, 

3, …, m–1, the Haar function vector hm(x) can be expressed 
in the matrix form Hm, the elements of which are given by:
 
 (Hm)i,r = hi(xr). (12)

 For instance, the fourth Haar wavelet matrix H4 can 
be represented in matrix form as:

 H4 = 

 
 
 The integration of hi(x) into the particular interval of 
[0, τ) can be expanded into a Haar series as in Chen and 
Hsiao (1997). 

  (13)

where the m × m matrix Pm is the operational matrix of 
integration, which is recursively obtained as follows 
(Swaidan & Hussin 2013):

 
  (14)

 In order to simplify the product of the two functions 
f(x) = cT h(x) and g(x) = dT h(x), we must obtain the 
product of h(x) and hT(x). The product can be expanded 
into a Haar series with a Haar coefficient matrix Mm as: 
 
 f(x)g(x) = dT hm(x) (x) c = dT Mm(c)h(x). (15)

where, Mm is an m × m matrix that is referred to as the 
product operational matrix. It was first expressed by Hsiao 
and Wu (2007), as follows: 

  (16)

where,  M1 = c0 and ca = [c0, …, cm/2–1]
T, cb = [cm/2, …, cm–1)

T.
 In the subsequent sections, we drop the subscript m 
to economize the notation if it is not confusing. 

NUMERICAL SOLUTION TO THE NONLINEAR OPTIMAL 
CONTROL PROBLEM

We proposed the following numerical solution to a 
nonlinear optimal control problem with inequality 
constraints. At each step of this algorithm, we identify 
an approximate solution to optimal control problems 
(1)-(4). The orthogonal Haar wavelet is used as a basis to 
approximate x(t) and control u(t).
 By applying the quasilinearization method (Bellman 
& Kalaba 1965), we can therefore replace optimal control 
problem (1)-(4) with the following sequence of constrained 
linear-quadratic optimal control problems:

Minimizes 

  (17)

 subject to the linearized time varying state equations: 

 

 (18)
where 

  (19)

  (20)

are the n1 × n1 and n1 × n2 matrices, respectively and the 
inequality constraints are expressed as follows: 

 x(t)[k] ≤ xmax,  x(t)[k] ≥ xmin, (21)

 u(t)[k] ≤ umax,  u(t)[k] ≥ umin,  (22)

 The initial matrices A0(t) and B0(t) were determined 
using an approximately accurate initial assumption of  x0(t) 
and u0(t) which does not cause the algorithm to diverge. 
We suggest starting from the initial condition vector x0.

OPTIMAL CONTROL PROBLEM USING HAAR 
WAVELET METHOD

The optimal control problem described in (17)-(22) is 
formalized using the orthogonal functions described in the 
third section. Given that Haar wavelet functions are not 
continuous, we first expand x(t) as follows: 

 (t) = cTh(t), (23)
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where cT is now an unknown n1 × m coefficient matrix.

Integrating (23) and by applying (13), we obtain 

 x(t) =  (24)

 x(t) = cT P h(t) + x0θ
T h(t),  (25)

where x0 is the n1  column vector and θT = [1,0,0,…,0]  is 
an m row vector. However, for the controls, we let 

 u(t) = dT h(t), (26)

where dT is an unknown n2 × m coefficient matrix.

Let vec(A) denotes the transformation of stacking the 
columns of AT and ⊗ represents the Kroneker product 
operation. Equations (23), (25) and (26) can then be 
written as 
 
  (27)
  
  (28)
 
 u(t) = (In2

 ⊗ hT(t))vec(d), (29)

where In1
 and In2 

denotes n1 × n1 and n2 × n2 identity 
matrices, respectively.

APPROXIMATION OF THE PERFORMANCE INDEX

When (28) and (29) are substituted into (17) and simplified, 
we obtain: 

 

(30)

 By utilizing Kronecker product properties (Brewer 
1978) and (11), we determine

(31)

 The performance index can be rewritten in quadratic 
form as follows (Bhatti 2000):

 J =  ZT Hess ZZ + FT Z + e, (32)

where 

 Z = [vecT (c)   vecT (d)]T, (33)

 Hess =  (34)

 F = [2vecT (x0θ
T)(Q ⊗ E PT)   O]T, (35)

  e = [vecT (x0θ
T)(Q ⊗ E)vec(x0θ

T)], (36)

are m(n1 + n2) × 1, m(n1 + n2) × m (n1 + n2), m(n1 + n2) ×1 
and 1×1 matrices, respectively. 

APPROXIMATIONS OF SYSTEM DYNAMICS AND 
INEQUALITY CONSTRAINTS

State equations are approximated in terms of the unknown 
coefficients of state and control variables by substituting 
(27), (28) and (29) into (18). Once these equations were 
simplified, the time varying matrices A(t) and B(t) should 
be expressed in terms of the Haar wavelets.
 The function of (i,j)th element of A(t) can be 
approximated using (10) as:

 [A(t)]ij = h(t), (37)

where   is the  m row vector of the known 
coefficients of the Haar wavelet function for each i = 1, 2, 
…, n1 and j = 1, 2, …, n1. 
 Similarly, the elements of B(t) can be expanded using 
Haar wavelet function: 

 [B(t)]ij =  h(t), (38)

where  is the constant 1×m row coefficients of a Haar 
wavelet function for  and j = 1, 2, …, n2.
 Then (37) and (38) can be rewritten in compact form 
by using Kronecker product properties as in Brewer (1978): 

 A(t) = GT (In1
 ⊗ h(t)), (39)

 B(t) = LT (In2
 ⊗ h(t)), (40)

where the block matrices  and 

 are of sizes n1×n1m  and n1×n2m, 

respectively.
 Given the notation above, substituting the transpose of 
(27), (28), (29) with (39) and (40) into (18) and simplified 
using (15) to obtain 

vecT(c) – vecT(c)(In1
 ⊗ P) (G) – 

vecT(d) (L) = vecT(x0θ
T) (G), (41)



  309

where (G) is n1m×n1m and (L)  is n2m×n1m. For 
example, 

   (G) =  (42)

 When (41) is transformed into standard system of 
linear equation form, we get 

  (43)

 Note that in this equation all the multiplications must 
be performed block wise as in Lancaster and Tismenetsky 
(1985). 
 The inequality constraints for state and control 
variables should also be determined in this study. These 
constraints were converted into quadratic programming 
constraints using the Haar wavelet collocation method. By 
substituting (28) and (29) into (21) and (22), respectively, 
at collocation points, we establish: 

 (In1
 ⊗ HT PT)vec(c) + vec(x0 θ

TH) ≤ vec(xmaxθ
TH), (44)

 (In1
 ⊗ HT PT)vec(c) + vec(x0 θ

TH) ≥ vec(xminθ
TH),  (45)

 (In2
 ⊗ HT)vec(d) ≤ vec(umaxθ

TH),  (46)

 (In2
 ⊗ HT)vec(d) ≥ vec(uminθ

TH). (47)

 By moving the constant vector of (44) and (45) to the 
other side and by changing the signs of the (45) and (47), 
we generate:

 (In1
 ⊗ HT PT)vec(c) ≤ vec(xmaxθ

TH) – vec(x0θ
TH),  (48)

  –(In1
 ⊗ HT PT)vec(c) ≤ vec(x0θ

TH) – vec(xminθ
TH),  (49)

 (In2
 ⊗ HT)vec(d) ≤ vec(umaxθ

TH),  (50)

 –(In2
 ⊗ HT)vec(d) ≤ –vec(uminθ

TH).  (51)

 By combining (48)-(51) after adding zeros of the 
missing variables in these equations, we obtain the 
following form of inequality constraints, 

 

 (52)

 Based on the previous reformulation, optimal control 
problems (17)-(22) can be approximated by the following 
quadratic programming problem (Bhatti 2000): 

 ZT HessZ + FT Z + e, (53)

 subject to 

 F1Z = b1 (54)

 F2Z ≤ b2 (55)

where 

 F1 = ⎣In1m – T(G)(In1 ⊗ PT) –  T(L)⎦, (56)

 b1 = ⎣ T(G)vec(x0θ
T)⎦, (57)

  (58)

 

  (59)

 

 Equations (53)-(59) represent a standard quadratic 
programming problem which can be solved using solver 
such as quadprog in MATLAB. Once we obtain the optimal 
solution to the unknown parameters Z, we substitute 
these parameters into (25) and (26) to determine the new 
nominal states xk(t) and controllers uk(t)  to be used in 
the subsequent iteration. These new nominal trajectories 
should be substituted into (18) to derive the next optimal 
control problem that is constrained linear quadratic. 
This procedure should be repeated until an acceptable 
convergence is achieved. The iteration is terminated when 
the difference between the two cost functions |Jk+1 – Jk| is 
sufficiently small.

APPLICATION OF HAAR WAVELET METHOD TO 
PRODUCTION-INVENTORY MODEL

Although most inventory models generally deal with a 
single-item model and time-varying demand rates with 
finite time horizon (Balkhi & Benkherouf 2004; Omar 
2012), however, such models are seldom applied in the 
real world. Multi-item inventory models are more realistic 
than single-item models. In multi-item models, the second 
item in an inventory favors the demand for the first and 
vice-versa. Here, we consider a factory that produces two 
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items and has a finished goods warehouse. The objective 
function includes the sum of inventory holding costs, the 
holding costs of one item as a result of the presence of 
others and the production costs. The problem is regarded 
as an optimal control problem with two state and two 
control variables, which are inventory levels yi and 
production rates vi, respectively (El-Gohary & Elsayed 
2008; Sethi & Thompson 2006). For i = 1,2, , let cii and 
hii be the production cost coefficients and the holding cost 
coefficients, respectively and h12 be the inventory holding 
cost coefficient of y1 due to the presence of unit of y2. Then 
the total cost 

 (60)

where  h11, h22 > , hii > 0, cii > 0 and i and i are the 
inventory levels and production rates goal, respectively.
 This cost needs to be minimize, subject to (El-Gohary 
& Elsayed 2008)

1(t) = –y1(t)(θ1 + a12y2(t) + a11y1(t)) – D1(y1, y2, t) + v1(t)

2(t) = –y2(t)(θ2 + a21y1(t) + a22y2(t)) – D2(y1, y2, t) + v2(t) 

 (61)

where Di(y1, y2, t) is the demand rates, θi is the natural 
deterioration rates of yi, aii is the deterioration coefficient 
due to self-contact of yi and aij is the demand coefficient 
of  yi due to the presence of unit of yj, i ≠ j with constraints 

 yi(t) ≥ 0, (62)

 vi(t) ≥ 0. (63)

 This system is nonlinear and is difficult to solve 
analytically. Therefore, we address it numerically and 
display the results graphically. The objective function (60) 
can be economically interpreted as an aim to maintain the 
inventory levels (y1(t), y2(t)) and production rates (v1(t), 
v2(t)) at values that are approximate to the desired ones. The 
system dynamics in (61) can be used to describe the time 
evolution of inventory levels and production rates.

With the substitution: 

 xi(t) = yi(t) – i, (64)

 ui(t) =  vi(t) – i,  (65)

the equations (60)-(63) can be reformulated as follows:
 
  (66)

subject to 

1(t) = –(x1(t) – 1)(θ1 + a12(x2(t) + 2) + a11(x1(t) + 1)) 
 – D1(x1, x2, t) + u1(t) + i,

2(t) = –(x2(t) – 2)(θ2 + a21(x1(t) + 1) + a22(x2(t) + 2)) 
 – D2(x1, x2, t) + u2(t) + 2, (67)

with constraints 

 xi(t) + i ≥ 0, (68)

 ui(t) + i ≥ 0,  (69)

where   and 

 The numerical solution to this problem as obtained 
using the proposed method with the following parameter 
values and intial states as in El-Gohary and Elsayed 
(2008),  h11 = 4, h12 = –4, h22 = 5, c11 = 6, c22 = 5, a11 = 0.04, 
a22 = 0.05, a12 = 0.7, a21 = 0.6, θ1 = 0.02, θ2 = 0.03, 1 = 
4,  2 = 3, 1 = 9, 2 = 8, y10 = 2, y20 = 1, D1 = 3x1 + 0.6 and 
D2 = 4x2 + 0.8.  The horizon of planning time is  tf = 5.
 Each state and control variable is approximated with 
Haar wavelet functions at mth resolution. Furthermore, 
optimal control problem, which is subject to constraints 
(67)-(69) is solved beginning with nominal trajectories  
= –2,  = –2 for m = 16, 32, 64, 128  and 256.  For each m, 
convergence is achieved in six quasilinearization iterations. 
The iteration is terminated when the difference between 
two cost functions |Jk+1 – Jk| is less than ε = 0.0001.
 Table 1 summarizes the results obtained from 
these five cases of Haar wavelet resolution, including 
the simulated optimal values of inventory levels and 
production rates, as well as the total cost at the end of the 
planning horizon period. Figures 1-4 show the optimal 
values of the inventory levels and the production rates for 
m = 256  and it successive quasilinearization iteration. The 
step functions in Figures 3 and 4 are not visible because 
the collocation points are too close to each other. Table 1 

TABLE 1. Simulation results of application with linear demand rates for m = 16, 32, 64, 128 and 256
 

 m  J*

16
32
64
128
256

2.0816 
2.0810 
2.0806 
2.0804 
2.0802 

 1.3484 
 1.3483 
 1.3482 
 1.3482 
 1.3481 

 9.0147 
 9.0096 
 9.0057 
 9.0031 
 9.0017 

 8.0070 
 8.0051 
 8.0033 
 8.0019 
 8.0010 

7.59681989 
7.59682922 
7.59683217 
7.59683295 
7.59683315
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FIGURE 1. First inventory level against time with linear demand rates and m = 256 
for k = 1,2,3,4,5,6 quasilinearization iterations

FIGURE 2. Second inventory level against time with linear demand rates 
and m = 256  for k = 1,2,3,4,5,6  quasilinearization iterations

FIGURE 3. First production rate against time with linear demand rates 
and  m = 256  for k = 1,2,3,4,5,6  quasilinearization iterations
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indicates that the approximated cost function converges to 
the true cost function as we increase the resolution of the 
Haar wavelet. Figures 1 and 2 also suggest that the optimal 
inventory levels increase over time. Figures 3 and 4 show 
how production rates were optimized and tended to their 
goal rates at the end of the planning horizon period. 
 El-Gohary and Elsayed (2008) reduced the same 
application problem into a system of differential equations 
according to the Pontryagin principle and numerically 
solved this system with the Runge-Kutta method to obtain 
the values as in Table 2. However, the indirect method 
used by El-Gohary and Elsayed (2008) has a drawback 
because the system contains co-state variables, which are 
not physical entities. Moreover, if the final state is fixed, 
the indirect method needs to solve a two-point boundary 
value problem.
 Although we have considerd m = 256 in our 
computation, but Table 1 shows that the usage of m = 32 
is enough to approximate the optimal cost function and 
trajectory variables to the same accuracy as that obtained 
in Table 2. 

CONCLUSION

In this study, we proposed a new numerical method to 
solve nonlinear optimal control problems with state and 
control inequality constraints. Our approach uses the 
quasilinearization method and the operational matrix of 
the Haar wavelet to convert the nonlinear optimal control 
problem into a sequence of linear quadratic programming 
problems that are constrained and time-varying. The 
method has been tested on optimal control problems that are 

constrained and nonlinear in two-dimensional state spaces 
with two controllers. In particular, we apply it to the two-item 
inventory model with stock-dependent deterioration rates 
and linear demand rates. In addition, the results are compared 
with the existing numerical solutions. Our method is simple 
and required fewer collocation points to achieve the same 
accuracy as the existing numerical solution. By increasing 
the Haar wavelet resolution, we can always improve the 
accuracy of the states, controls and cost.
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